Melatonin-pretreated adipose-derived mesenchymal stem cells efficeintly improved learning, memory, and cognition in an animal model of Alzheimer's disease

褪黑激素预处理的脂肪间充质干细胞有效改善了阿尔茨海默病动物模型的学习、记忆和认知能力

阅读:4
作者:Ebrahim Nasiri, Akram Alizadeh, Amaneh Mohammadi Roushandeh, Rouhollah Gazor, Nasrin Hashemi-Firouzi, Zoleikha Golipoor

Abstract

Currently, mesenchymal stem cells (MSCs) based therapy has extensive attraction for Alzheimer's disease (AD). However, low survival rate of MSCs after transplantation is a huge challenging. The current study aimed to improve adipose-derived MSCs (AD-MSCs)-based therapy by their pre-treatment with melatonin (MT) 'a well-known antioxidant' in an animal model of AD. In this study, after isolating rat AD-MSCs from the epididymal white adipose tissues, the cells were pretreated with 5μM of MT for 24 hours. Forty male Wistar rats were randomly allocated to control, sham, amyloid-beta (Aβ) peptide, AD-MSCs and MT-pretreated ADMSCs groups. The novel object recognition, passive avoidance test, Morris water maze and open field test were performed two months following the cell transplantation. The rats were sacrificed 69 days following cell therapy. The brain tissues were removed for histopathological analysis and also immunohistochemistry was performed for two Aβ1-42 and Iba1 proteins. It has been revealed that both AD-MSCs and MT-AD-MSCs migrated to brain tissues after intravenous transplantation. However, MT-ADMSCs significantly improved learning, memory and cognition compared with AD-MSCs (P<0.05). Furthermore, clearance of Aβ deposition and reduction of microglial cells were significantly increased in the MT-ADMSCs compared with AD-MSCs. Although stem cell therapy has been introduced as a promising strategy in neurodegenerative diseases, however, its therapeutic properties are limited. It is suggested that pretreatment of MSCs with melatonin partly would increase the cells efficiency and consequently could decrease AD complication including memory and cognition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。