Deconvoluting Kinetic Rate Constants of Catalytic Substrates from Scanning Electrochemical Approach Curves with Artificial Neural Networks

利用人工神经网络从扫描电化学接近曲线解卷积催化底物的动力学速率常数

阅读:5
作者:Dinuka Rajapakse, Josh Meckstroth, Dylan T Jantz, Kyle Vincent Camarda, Zijun Yao, Kevin C Leonard

Abstract

Extracting information from experimental measurements in the chemical sciences typically requires curve fitting, deconvolution, and/or solving the governing partial differential equations via numerical (e.g., finite element analysis) or analytical methods. However, using numerical or analytical methods for high-throughput data analysis typically requires significant postprocessing efforts. Here, we show that deep learning artificial neural networks can be a very effective tool for extracting information from experimental data. As an example, reactivity and topography information from scanning electrochemical microscopy (SECM) approach curves are highly convoluted. This study utilized multilayer perceptrons and convolutional neural networks trained on simulated SECM data to extract kinetic rate constants of catalytic substrates. Our key findings were that multilayer perceptron models performed very well when the experimental data were close to the ideal conditions with which the model was trained. However, convolutional neural networks, which analyze images as opposed to direct data, were able to accurately predict the kinetic rate constant of Fe-doped nickel (oxy)hydroxide catalyst at different applied potentials even though the experimental approach curves were not ideal. Due to the speed at which machine learning models can analyze data, we believe this study shows that artificial neural networks could become powerful tools in high-throughput data analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。