Dopamine and Serotonin Modulate Free Amino Acids Production and Na+/K+ Pump Activity in Chinese Mitten Crab Eriocheir sinensis Under Acute Salinity Stress

多巴胺和血清素调节急性盐胁迫下中华绒螯蟹游离氨基酸的产生和 Na+/K+ 泵活性

阅读:6
作者:Zhaoqun Liu, Zhi Zhou, Lingling Wang, Meijia Li, Weilin Wang, Qilin Yi, Shu Huang, Linsheng Song

Abstract

The Chinese mitten crab Eriocheir sinensis lives in saline or fresh water during different life stages and exhibits a complex life history, making it an ideal model to study the salinity adaptation of euryhaline animals. In this study, RNA-seq techniques, and determinations of free amino acids (FAAs), monoamine neurotransmitters, and Na+/K+ pump activity, were employed to understand the osmoregulatory mechanism in Chinese mitten crab. A total of 15,138 differentially expressed genes were obtained from 12 transcriptome libraries. GO enrichment analysis revealed that the mRNA expression profiles were completely remodeled from 12 to 24 h after salinity stress. The neuroendocrine system was activated under stimulation, and the monoamine neurotransmitters including dopamine (DA) and serotonin (5-HT) were released to modulate osmoregulation. Furthermore, the Na+/K+ pump in crab hemocytes was significantly inhibited post salinity stress, resulting in increased intracellular ion concentrations and osmotic pressure to sustain the osmotic balance. Moreover, six key FAAs, including alanine (Ala), proline (Pro), glycine (Gly), glutamate (Glu), arginine (Arg), and aspartate (Asp), were overexpressed to modulate the extracellular osmotic balance during salinity adaptation. Interestingly, the immune genes were not enriched in the GO analysis, implying that the immune system might not contribute fundamentally to the tolerance upon fluctuating ambient salinity in the Chinese mitten crab. These results collectively demonstrated that the Chinese mitten crab had evolved an efficient regulation mechanism by modulating the FAAs production and Na+/K+ pump activity to sustain the osmotic balance independent of the immune system, in which the neuroendocrine modulation, especially generated by the monoamine neurotransmitter, played an indispensable role.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。