Dissecting macrophage heterogeneity and kaempferol in lung adenocarcinoma: a single-cell transcriptomic approach and network pharmacology

解剖肺腺癌中的巨噬细胞异质性和山奈酚:单细胞转录组学方法和网络药理学

阅读:7
作者:Laiyi Wan #, Wentao Hao, Leilei Li, Lin Wang #, Yanzheng Song #

Background

Lung adenocarcinoma (LUAD) is a leading form of non-small cell lung cancer characterized by a complex tumor microenvironment (TME) that influences disease progression and therapeutic response. Tumor-associated macrophages (TAMs) within the TME promote tumorigenesis and evasion of immune surveillance, though their heterogeneity poses challenges in understanding their roles and therapeutic targeting. Additionally, traditional Chinese medicine (TCM) offers potential anti-cancer agents that could modulate the immune landscape.

Conclusions

This study delineates the diverse macrophage landscape in LUAD and suggests a pivotal role for STAT1 in TAM-mediated immunosuppression. Kaempferol, identified from TCM, emerges as an influential agent capable of altering TAM polarization, potentially enhancing anti-tumoral immunity. These findings underscore the translational potential of integrating TCM-derived compounds into immunotherapeutic strategies for LUAD.

Methods

We conducted single-cell RNA sequencing (scRNA-seq) on LUAD samples, performing an in-depth analysis of macrophage populations and their expression signatures. Network pharmacology was used to identify TCM components with potential TAM-modulatory effects, focusing on Astragalus membranaceus. Pseudotime trajectory analysis, immunofluorescence staining, and in vitro assays examined the functional roles of TAMs and the effects of selected compounds on macrophage polarization.

Results

Our scRNA-seq analysis identified notable heterogeneity among macrophages, revealing predominant M2-like phenotypes within TAMs. Network pharmacology highlighted active TCM ingredients, including quercetin, isorhamnetin, and kaempferol, targeting genes related to macrophage function. Survival analysis implicated AHSA1, CYP1B1, SPP1, and STAT1 as prognostically significant factors. Further experiments demonstrated kaempferol's efficacy in inhibiting M2 polarization, underlining a selective influence on TAM functionality. Conclusions: This study delineates the diverse macrophage landscape in LUAD and suggests a pivotal role for STAT1 in TAM-mediated immunosuppression. Kaempferol, identified from TCM, emerges as an influential agent capable of altering TAM polarization, potentially enhancing anti-tumoral immunity. These findings underscore the translational potential of integrating TCM-derived compounds into immunotherapeutic strategies for LUAD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。