Conclusion
The MAGIC application has effectively decreased the false-positive mosaicism, hence to ensure the stability and veracity of detection results, to avoid misdiagnoses, and to improve accuracy, as well as to avoid re-biopsy procedures. The study also contributes to understand how the IVF laboratory and the molecular biology laboratory depend on each other to achieve good-quality PGT results, which are clinically relevant for the patients.
Methods
Biopsied TE cells were first evaluated according to the MAGIC procedure, followed by whole-genome amplification (WGA) and library construction, and then sequenced using the Illumina X Ten Platform. Copy number variation (CNV) and allele drop-out (ADO) rates as well as test failure rates were compared and analyzed.
Purpose
While efforts have been made to establish blastocyst grading systems in the past decades, little research has examined the quality of biopsy specimens. This study is the first to correlate the morphology of biopsied trophectoderm (TE) cells to their quality and subsequent genetic testing
Results
Our data explores the relationship between TE cell morphology and its quality and final genetic testing outcome, which is established based on the MAGIC system. MAGIC guarantees that only high- or good-quality TE cells are used for genetic testing to generate excellent data uniformity and lower ADO rates. Low-quality cells containing biopsied TE cell mass are responsible for the "background noise" of CNV analysis.
