A silent agonist of α7 nicotinic acetylcholine receptors modulates inflammation ex vivo and attenuates EAE

α7 烟碱乙酰胆碱受体的静默激动剂可调节体外炎症并减弱 EAE

阅读:5
作者:Jean-Rémi Godin, Patrick Roy, Marta Quadri, Deniz Bagdas, Wisam Toma, Ramya Narendrula-Kotha, Osama A Kishta, M Imad Damaj, Nicole A Horenstein, Roger L Papke, Alain R Simard

Abstract

Nicotinic acetylcholine receptors (nAChRs) are best known to function as ligand-gated ion channels in the nervous system. However, recent evidence suggests that nicotine modulates inflammation by desensitizing non-neuronal nAChRs, rather than by inducing channel opening. Silent agonists are molecules that selectively induce the desensitized state of nAChRs while producing little or no channel opening. A silent agonist of α7 nAChRs has recently been shown to reduce inflammation in an animal model of inflammatory pain. The objective of this study was to determine whether a silent agonist of α7 nAChRs can also effectively modulate inflammation and disease manifestation in an animal model of multiple sclerosis. We first evaluated the effects of various nAChR ligands and of an α7 nAChR-selective silent agonist, 1-ethyl-4-(3-(bromo)phenyl)piperazine (m-bromo PEP), on the modulation of mouse bone marrow-derived monocyte/macrophage (BMDM) numbers, phenotype and cytokine production. The non-competitive antagonist mecamylamine and the silent agonist m-bromo PEP reduced pro-inflammatory BMDM numbers by affecting their viability and proliferation. Both molecules also significantly reduced cytokine production by mouse BMDMs and significantly ameliorated disease in experimental autoimmune encephalomyelitis. Finally, m-bromo PEP also reduced chronic inflammatory pain in mice. Taken together, our results further support the hypothesis that nAChRs may modulate inflammation via receptor desensitization rather than channel opening. α7 nAChR-selective silent agonists may thus be a novel source of anti-inflammatory compounds that could be used for the treatment of inflammatory disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。