Assessing the Influence of the Sourcing Voltage on Polyaniline Composites for Stress Sensing Applications

评估源电压对聚苯胺复合材料应力传感应用的影响

阅读:5
作者:Andrés Felipe Cruz-Pacheco, Leonel Paredes-Madrid, Jahir Orozco, Jairo Alberto Gómez-Cuaspud, Carlos R Batista-Rodríguez, Carlos Andrés Palacio Gómez

Abstract

Polyaniline (PANI) has recently gained great attention due to its outstanding electrical properties and ease of processability; these characteristics make it ideal for the manufacturing of polymer blends. In this study, the processing and piezoresistive characterization of polymer composites resulting from the blend of PANI with ultra-high molecular weight polyethylene (UHMWPE) in different weight percentages (wt %) is reported. The PANI/UHMWPE composites were uniformly homogenized by mechanical mixing and the pellets were manufactured by compression molding. A total of four pellets were manufactured, with PANI percentages of 20, 25, 30 and 35 wt %. Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were used to confirm the effective distribution of PANI and UHMWPE particles in the pellets. A piezoresistive characterization was performed on the basis of compressive forces at different voltages; it was found that the error metrics of hysteresis and drift were influenced by the operating voltage. In general, larger voltages lowered the error metrics, but a reduction in sensor sensitivity came along with voltage increments. In an attempt to explain such a phenomenon, the authors developed a microscopic model for the piezoresistive response of PANI composites, aiming towards a broader usage of PANI composites in strain/stress sensing applications as an alternative to carbonaceous materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。