Galantamine anti-colitic effect: Role of alpha-7 nicotinic acetylcholine receptor in modulating Jak/STAT3, NF-κB/HMGB1/RAGE and p-AKT/Bcl-2 pathways

加兰他敏抗结肠炎作用:α-7 烟碱乙酰胆碱受体在调节 Jak/STAT3、NF-κB/HMGB1/RAGE 和 p-AKT/Bcl-2 通路中的作用

阅读:5
作者:Shakeeb A Wazea, Walaa Wadie, Ashraf K Bahgat, Hanan S El-Abhar

Abstract

Vagal stimulation controls systemic inflammation and modulates the immune response in different inflammatory conditions, including inflammatory bowel diseases (IBD). The released acetylcholine binds to alpha-7 nicotinic acetylcholine receptor (α7 nAChR) to suppress pro-inflammatory cytokines. This provides a new range of potential therapeutic approaches for controlling inflammatory responses. The present study aimed to assess whether galantamine (Galan) anti-inflammatory action involves α7 nAChR in a 2,4,6-trinitrobenzene sulfonic acid (TNBS) model of colitis and to estimate its possible molecular pathways. Rats were assigned into normal, TNBS, sulfasalazine (Sulfz), Galan treated (10 mg/kg), methyllycaconitine (MLA; 5.6 mg/kg), and MLA + Galan groups. Drugs were administered orally once per day (11 days) and colitis was induced on the 8th day. Galan reduced the TNBS-induced ulceration, colon mass index, colonic MDA, neutrophils adhesion and infiltration (ICAM-1/MPO), inflammatory mediators (NF-κB, TNF-α, HMGB1, and RAGE), while increased the anti-apoptotic pathway (p-Akt/Bcl-2). Mechanistic study revealed that Galan increased the anti-inflammatory cytokine IL-10, phosphorylated Jak2, while reduced the inflammation controller SOCS3. However, combining MLA with Galan abrogated the beneficial anti-inflammatory/anti-apoptotic signals. The results of the present study indicate that Galan anti-inflammatory/-apoptotic/ -oxidant effects originate from the stimulation of the peripheral α7 nAChR, with the involvement of the Jak2/SOCS3 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。