Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor beta signaling

Smad2/3 结合位点微阵列分析中的染色质免疫沉淀揭示了 ETS1 和 TFAP2A 在转化生长因子 β 信号传导中的作用

阅读:16
作者:Daizo Koinuma, Shuichi Tsutsumi, Naoko Kamimura, Hirokazu Taniguchi, Keiji Miyazawa, Makoto Sunamura, Takeshi Imamura, Kohei Miyazono, Hiroyuki Aburatani

Abstract

The Smad2 and Smad3 (Smad2/3) proteins are principally involved in the transmission of transforming growth factor beta (TGF-beta) signaling from the plasma membrane to the nucleus. Many transcription factors have been shown to cooperate with the Smad2/3 proteins in regulating the transcription of target genes, enabling appropriate gene expression by cells. Here we identified 1,787 Smad2/3 binding sites in the promoter regions of over 25,500 genes by chromatin immunoprecipitation on microarray in HaCaT keratinocytes. Binding elements for the v-ets erythroblastosis virus E26 oncogene homolog (ETS) and transcription factor AP-2 (TFAP2) were significantly enriched in Smad2/3 binding sites, and knockdown of either ETS1 or TFAP2A resulted in overall alteration of TGF-beta-induced transcription, suggesting general roles for ETS1 and TFAP2A in the transcription induced by TGF-beta-Smad pathways. We identified novel Smad binding sites in the CDKN1A gene where Smad2/3 binding was regulated by ETS1 and TFAP2A. Moreover, we showed that small interfering RNAs for ETS1 and TFAP2A affected TGF-beta-induced cytostasis. We also analyzed Smad2- or Smad3-specific target genes regulated by TGF-beta and found that their specificity did not appear to be solely determined by the amounts of the Smad2/3 proteins bound to the promoters. These findings reveal novel regulatory mechanisms of Smad2/3-induced transcription and provide an essential resource for understanding their roles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。