Phosphorylation of Ephexin4 at Ser-41 contributes to chromosome alignment via RhoG activation in cell division

Ephexin4 Ser-41 位点的磷酸化通过细胞分裂过程中的 RhoG 激活促进染色体排列

阅读:8
作者:Ryuji Yasutake, Hiroki Kuwajima, Ryuzaburo Yuki, Junna Tanaka, Youhei Saito, Yuji Nakayama

Abstract

Ephexin proteins are guanine nucleotide exchange factors for the Rho GTPases. We reported that Ephexin4 regulates M-phase progression downstream of phosphorylated EphA2, a receptor-type tyrosine kinase, through RhoG activation; however, the regulation of Ephexin4 during M phase remains unknown. In this study, a novel Ephexin4 phosphorylation site was identified at Ser41, exclusively in M phase. Ephexin4 knockdown prolonged the duration of M phase by activating the spindle assembly checkpoint, at which BubR1 was localized at the kinetochores of the misaligned chromosomes. This delay was alleviated by re-expression of wild-type, but not S41A Ephexin4. The Ephexin4 knockdown caused chromosome misalignment and reduced the RhoG localization to the plasma membrane. These phenotypes were rescued by re-expression of wild type and phospho-mimic S41E mutant, but not the S41A mutant. Consistently, S41E mutant enhanced active RhoG levels, even in the interphase. Regardless of the Ephexin4 knockdown, active RhoG-G12V was localized at the plasma membrane. Furthermore, Ephexin4 knockdown exacerbated vincristine-induced chromosome misalignment, which was prevented by re-expressing the wild-type but not S41A Ephexin4. Overexpression of wild type and S41E mutant, but not S41A mutant, resulted in an increased number of Madin-Darby canine kidney cysts with cells inside the lumen, indicating disruption of epithelial morphogenesis by deregulating Ephexin4/RhoG signaling in cell division. Our results suggest that Ephexin4 undergoes phosphorylation at Ser41 in cell division, and the phosphorylation is required for chromosome alignment through RhoG activation. Combined with mitosis-targeting agents, inhibition of Ephexin4 phosphorylation may represent a novel strategy for cancer chemotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。