Flexible Semiconductor Technologies with Nanoholes-Provided High Areal Coverages and Their Application in Plasmonic-Enhanced Thin Film Photovoltaics

具有纳米孔的高面积覆盖率的柔性半导体技术及其在等离子体增强薄膜光伏中的应用

阅读:5
作者:Zhaozhao Wang, Linfa Peng, Zhongqin Lin, Jun Ni, Peiyun Yi, Xinmin Lai, Xiaolong He, Zeyu Lei

Abstract

Mechanical flexibility and advanced light management have gained great attentions in designing high performance, flexible thin film photovoltaics for the realization of building-integrated optoelectronic devices and portable energy sources. This study develops a soft thermal nanoimprint process for fabricating nanostructure decorated substrates integrated with amorphous silicon solar cells. Amorphous silicon (a-Si:H) solar cells have been constructed on nanoholes array textured polyimide (PI) substrates. It has been demonstrated that the nanostructures not only are beneficial to the mechanical flexibility improvement but also contribute to sunlight harvesting enhancement. The a-Si:H solar cells constructed on such nanopatterned substrates possess broadband-enhanced light absorption, high quantum efficiency and desirable power conversion efficiency (PCE) and still experience minimal PCE loss even bending around 180°. The PCE performance without antireflection coatings increases to 7.70% and it improves 40% compared with the planar devices. Although the advantages and feasibility of the schemes are demonstrated only in the application of a-Si:H solar cells, the ideas are able to extend to applications of other thin film photovoltaics and semiconductor devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。