Characterisation of Vibrio Species from Surface and Drinking Water Sources and Assessment of Biocontrol Potentials of Their Bacteriophages

地表水和饮用水源中弧菌种的表征及其噬菌体的生物防治潜力评估

阅读:5
作者:Mpho Defney Maje, Christ Donald Kaptchouang Tchatchouang, Madira Coutlyne Manganyi, Justine Fri, Collins Njie Ateba

Abstract

The aim of this study was to characterise Vibrio species of water samples collected from taps, boreholes, and dams in the North West province, South Africa, and assess biocontrol potentials of their bacteriophages. Fifty-seven putative Vibrio isolates were obtained on thiosulfate-citrate-bile-salt-sucrose agar and identified using biochemical tests and species-specific PCRs. Isolates were further characterised based on the presence of virulence factors, susceptibility to eleven antibiotics, and biofilm formation potentials. Twenty-two (38.60%) isolates were confirmed as Vibrio species, comprising V. harveyi (45.5%, n = 10), V. parahaemolyticus (22.7%, n = 5), V. cholerae (13.6%, n = 3), V. mimicus (9.1%, n = 2), and V. vulnificus (9.1%, n = 2). Three of the six virulent genes screened were positively amplified; four V. parahaemolyticus possessed the tdh (18.18%) and trh (18.18%) genes, while the zot gene was harboured by 3 V. cholerae (13.64%) and one V. mimicus (4.55%) isolate. Isolates revealed high levels of resistance to cephalothin (95.45%), ampicillin (77.27%), and streptomycin (40.91%), while lower resistances (4.55%-27.27%) were recorded for other antimicrobials. Sixteen (72.7%) isolates displayed multiple antibiotic-resistant properties. Cluster analysis of antibiotic resistance revealed a closer relationship between Vibrio isolates from different sampling sites. The Vibrio species displayed biofilm formation potentials at 37°C (63.6, n = 14), 35°C (50%, n = 11), and 25°C (36.4%, n = 8). Two phages isolated in this study (vB_VpM_SA3V and vB_VcM_SA3V) were classified as belonging to the family Myoviridae based on electron microscopy. These were able to lyse multidrug-resistant V. parahaemolyticus and V. cholerae strains. These findings not only indicate the presence of antibiotic-resistant virulent Vibrio species from dam, borehole, and tap water samples that could pose a health risk to humans who either come in contact with or consume water but also present these lytic phages as alternative agents that can be exploited for biological control of these pathogenic strains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。