Versican binds collagen via its G3 domain and regulates the organization and mechanics of collagenous matrices

Versican 通过其 G3 结构域与胶原蛋白结合,并调节胶原基质的组织和力学

阅读:6
作者:Dongning Chen, Yu Du, Jessica Llewellyn, Arkadiusz Bonna, Biao Zuo, Paul A Janmey, Richard W Farndale, Rebecca G Wells

Abstract

Type I collagen is the most abundant structural protein in the body and, with other fibrillar collagens, forms the fibrous network of the extracellular matrix. Another group of extracellular matrix polymers, the glycosaminoglycans, and glycosaminoglycan-modified proteoglycans, play important roles in regulating collagen behaviors and contribute to the compositional, structural, and mechanical complexity of the extracellular matrix. While the binding between collagen and small leucine-rich proteoglycans has been studied in detail, the interactions between collagen and the large bottlebrush proteoglycan versican are not well understood. Here, we report that versican binds collagen directly and regulates collagen structure and mechanics. Versican colocalizes with collagen fibers in vivo and binds to collagen via its C-terminal G3 domain (a non-GAG-modified domain present in all known versican isoforms) in vitro; it promotes the deposition of a highly aligned collagen-rich matrix by fibroblasts. Versican also shows an unexpected effect on the rheology of collagen gels in vitro, causing decreased stiffness and attenuated shear strain stiffening, and the cleavage of versican in the liver results in reduced tissue compression stiffening. Thus, versican is an important collagen-binding partner and plays a role in modulating collagen organization and mechanics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。