3-Amino-1,2,4-Triazole Induces Quick and Strong Fat Loss in Mice with High Fat-Induced Metabolic Syndrome

3-氨基-1,2,4-三唑可使高脂肪代谢综合征小鼠快速有效地减脂

阅读:5
作者:Valéria Nunes-Souza, Nelson Miguel Dias-Júnior, Marcos Antônio Eleutério-Silva, Vanessa P Ferreira-Neves, Fabiana Andréa Moura, Natalia Alenina, Michael Bader, Luíza A Rabelo

Background

Obesity is a growing epidemic with limited effective treatments and an important risk factor for several diseases such as metabolic syndrome (MetS). In this study, we aimed to investigate the effect of 3-amino-1,2,4-triazole (ATZ), an inhibitor of catalase and heme synthesis, in a murine model for MetS.

Conclusions

In the context of HFD-induced obesity and metabolic syndrome, the fat loss induced by ATZ is probably due to heme synthesis inhibition, which blocks adipogenesis by probably decreased RevErbα activity, leading to apoptosis of adipocytes and the recruitment of macrophages. As a consequence of fat loss, ATZ elicits a beneficial systemic antiobesity effect and improves the metabolic status.

Methods

Male C57BL/6 mice with high-fat diet-induced MetS received ATZ (500 mg·kg-1·24 h-1) for 12 weeks.

Results

The HFD group showed increased blood pressure and body weight, enhanced fat deposition accompanied by an increase in adipocyte diameter, and decreased lipolysis in white adipose tissue (WAT). The expression of genes related to inflammation was increased in WAT of the HFD group. Concurrently, these mice exhibited an increase in leptin, nonesterified fatty acid (NEFA), insulin, and glucose in plasma, coupled with glucose intolerance and insulin resistance. Strikingly, ATZ prevented the increase in blood pressure and the HFD-induced obesity as observed by lower body weight, WAT index, triglycerides, NEFA, and leptin in plasma. ATZ treatment also prevented the HFD-induced increase in adipocyte diameter and even induced marked atrophy and the accumulation of macrophages in this tissue. ATZ treatment also improved glucose metabolism by increasing glucose tolerance and insulin sensitivity, GLUT4 mRNA expression in WAT in parallel to decreased insulin levels. Conclusions: In the context of HFD-induced obesity and metabolic syndrome, the fat loss induced by ATZ is probably due to heme synthesis inhibition, which blocks adipogenesis by probably decreased RevErbα activity, leading to apoptosis of adipocytes and the recruitment of macrophages. As a consequence of fat loss, ATZ elicits a beneficial systemic antiobesity effect and improves the metabolic status.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。