Catalytic activities of a highly efficient cocaine hydrolase for hydrolysis of biologically active cocaine metabolites norcocaine and benzoylecgonine

高效可卡因水解酶对生物活性可卡因代谢物去甲可卡因和苯甲酰爱康宁水解的催化活性

阅读:7
作者:Linyue Shang, Zhenyu Jin, Huimei Wei, Shawn Park, Chang-Guo Zhan, Fang Zheng

Abstract

Cocaine is a widely abused, hepatotoxic drug without an FDA-approved pharmacotherapy specific for cocaine addiction or overdose. It is recognized as a promising therapeutic strategy to accelerate cocaine metabolism which can convert cocaine to pharmacologically inactive metabolite(s) using an efficient cocaine-metabolizing enzyme. Our previous studies have successfully designed and discovered a highly efficient cocaine hydrolase, denoted as CocH5-Fc(M6), capable of rapidly hydrolyzing cocaine at the benzoyl ester moiety. In the present study, we determined the kinetic parameters of CocH5-Fc(M6) against norcocaine (kcat = 9,210 min-1, KM = 20.9 μM, and kcat/KM = 1.87 × 105 min-1 M-1) and benzoylecgonine (kcat = 158 min-1, KM = 286 μM, and kcat/KM = 5.5 × 105 min-1 M-1) for the first time. Further in vivo studies have demonstrated that CocH5-Fc(M6) can effectively accelerate clearance of not only cocaine, but also norcocaine (known as a cocaine metabolite which is more toxic than cocaine itself) and benzoylecgonine (known as an unfavorable long-lasting metabolite with some long-term toxicity concerns) in rats. Due to the desired high catalytic activity against norcocaine, CocH5-Fc(M6) is capable of quickly detoxifying both cocaine and its more toxic metabolite norcocaine after intraperitoneally administering lethal dose of 60 or 180 mg/kg cocaine. In addition, the ability of CocH5-Fc(M6) to accelerate clearance of benzoylecgonine should also be valuable for the use of CocH5-Fc(M6) in treatment of cocaine use disorder.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。