Co-Expression of Runx1, Hoxa9, Hlf, and Hoxa7 Confers Multi-Lineage Potential on Hematopoietic Progenitors Derived From Pluripotent Stem Cells

Runx1、Hoxa9、Hlf 和 Hoxa7 的共表达赋予来自多能干细胞的造血祖细胞多谱系潜能

阅读:4
作者:Bo Yu, Bingyan Wu, Pingshan Hong, Huan Peng, Mengyun Zhang, Qi Zhang, Lijuan Liu, Xiaofei Liu, Yang Geng, Jinyong Wang, Yu Lan

Abstract

The intrinsic factors that determine the fundamental traits of engraftment ability and multi-lineage potential of hematopoietic stem cells (HSCs) remain elusive. The induction of bona fade HSCs from pluripotent stem cells (PSCs) in dishes is urgently demanded but remains a great challenge in translational medicine. Runx1, Hoxa9, Hlf, and Hoxa7 are developmentally co-expressed during endothelial-to-hematopoietic transition and adult haematopoiesis. However, the expression of these factors fails to be turned on during in vitro hematopoietic induction from PSCs. Here, we established an inducible gene over-expression embryonic stem cell (ESC) line in which exogenous Runx1, Hoxa9, Hlf, and Hoxa7 genes were tandemly knocked in. A population of induced hematopoietic progenitor cells (iHPCs) expressing Kit and Sca1 surface markers were successfully obtained in vitro from the gene edited-ESC line. Upon transplantation of the Runx1-Hoxa9-Hlf-Hoxa7 ESC-derived iHPCs into irradiated immunodeficient mice, they can dominantly contribute to B cells, low proportions of T cells and myeloid cells. However, Runx1-Hoxa9-Hlf ESC-derived iHPCs only produced B lineage cells with extremely low contributions. Our study unveils that the coordination of Runx1, Hoxa9, Hlf, and Hoxa7 led to generation of the hematopoietic progenitors with the capacity of multi-lineage hematopoietic reconstitution in the immunodeficient recipient mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。