MAPK signaling couples SCF-mediated degradation of translational regulators to oocyte meiotic progression

MAPK 信号将 SCF 介导的翻译调节因子降解与卵母细胞减数分裂进程联系起来

阅读:4
作者:Edyta Kisielnicka, Ryuji Minasaki, Christian R Eckmann

Abstract

RNA-binding proteins (RBPs) are important regulators of gene expression programs, especially during gametogenesis. How the abundance of particular RBPs is restricted to defined stages of meiosis remains largely elusive. Here, we report a molecular pathway that subjects two nonrelated but broadly evolutionarily conserved translational regulators (CPB-3/CPEB and GLD-1/STAR) to proteosomal degradation in Caenorhabditis elegans germ cells at the transition from pachytene to diplotene of meiotic prophase. Both RBPs are recognized by the same ubiquitin ligase complex, containing the molecular scaffold Cullin-1 and the tumor suppressor SEL-10/FBXW7 as its substrate recognition subunit. Destabilization of either RBP through this Skp, Cullin, F-box-containing complex (SCF) ubiquitin ligase appears to loosen its negative control over established target mRNAs, and presumably depends on a prior phosphorylation of CPB-3 and GLD-1 by MAPK (MPK-1), whose activity increases in mid- to late pachytene to promote meiotic progression and oocyte differentiation. Thus, we propose that the orchestrated degradation of RBPs via MAPK-signaling cascades during germ cell development may act to synchronize meiotic with sexual differentiation gene expression changes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。