Identification of inactive conformation-selective interleukin-2-inducible T-cell kinase (ITK) inhibitors based on second-harmonic generation

基于二次谐波产生的无活性构象选择性白细胞介素-2诱导T细胞激酶(ITK)抑制剂的鉴定

阅读:5
作者:Yoshiji Hantani, Kiyosei Iio, Rie Hantani, Kayo Umetani, Toshihiro Sato, Tracy Young, Katelyn Connell, Sam Kintz, Joshua Salafsky

Abstract

Many clinically approved protein kinase inhibitors stabilize an inactive conformation of their kinase target. Such inhibitors are generally highly selective compared to active conformation inhibitors, and consequently, general methods to identify inhibitors that stabilize an inactive conformation are much sought after. Here, we have applied a high-throughput, second-harmonic generation (SHG)-based conformational approach to identify small molecule stabilizers of the inactive conformation of interleukin-2-inducible T-cell kinase (ITK). A single-site cysteine mutant of the ITK kinase domain was created, labeled with an SHG-active dye, and tethered to a supported lipid bilayer membrane. Fourteen tool compounds, including stabilizers of the inactive and active conformations as well as nonbinders, were first examined for their effect on the conformation of the labeled ITK protein in the SHG assay. As a result, inactive conformation inhibitors were clearly distinguished from active conformation inhibitors by the intensity of SHG signal. Utilizing the SHG assay developed with the tool compounds described above, we identified the mechanism of action of 22 highly selective, inactive conformation inhibitors within a group of 105 small molecule inhibitors previously identified in a high-throughput biochemical screen. We describe here the first use of SHG for identifying and classifying inhibitors that stabilize an inactive vs. an active conformation of a protein kinase, without the need to determine costructures by X-ray crystallography. Our results suggest broad applicability to other proteins, particularly with single-site labels reporting on specific protein movements associated with selectivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。