A biochemical and biophysical model of G-quadruplex DNA recognition by positive coactivator of transcription 4

转录正激活因子 4 识别 G-四链体 DNA 的生化和生物物理模型

阅读:5
作者:Wezley C Griffin, Jun Gao, Alicia K Byrd, Shubeena Chib, Kevin D Raney

Abstract

DNA sequences that are guanine-rich have received considerable attention because of their potential to fold into a secondary, four-stranded DNA structure termed G-quadruplex (G4), which has been implicated in genomic instability and some human diseases. We have previously identified positive coactivator of transcription (PC4), a single-stranded DNA (ssDNA)-binding protein, as a novel G4 interactor. Here, to expand on these previous observations, we biochemically and biophysically characterized the interaction between PC4 and G4DNA. PC4 can bind alternative G4DNA topologies with a low nanomolar Kd value of ∼2 nm, similar to that observed for ssDNA. In consideration of the different structural features between G4DNA and ssDNA, these binding data indicated that PC4 can interact with G4DNA in a manner distinct from ssDNA. The stoichiometry of the PC4-G4 complex was 1:1 for PC4 dimer:G4 substrate. PC4 did not enhance the rate of folding of G4DNA, and formation of the PC4-G4DNA complex did not result in unfolding of the G4DNA structure. We assembled a G4DNA structure flanked by duplex DNA. We find that PC4 can interact with this G4DNA, as well as the complementary C-rich strand. Molecular docking simulations and DNA footprinting experiments suggest a model where a PC4 dimer accommodates the DNA with one monomer on the G4 strand and the second monomer bound to the C-rich strand. Collectively, these data provide a novel mode of PC4 binding to a DNA secondary structure that remains within the framework of the model for binding to ssDNA. Additionally, consideration of the PC4-G4DNA interaction could provide insight into the biological functions of PC4, which remain incompletely understood.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。