Fibroblast growth factor receptor 3 associates with and tyrosine phosphorylates p90 RSK2, leading to RSK2 activation that mediates hematopoietic transformation

成纤维细胞生长因子受体 3 与 p90 RSK2 结合,并酪氨酸磷酸化 p90 RSK2,从而导致 RSK2 激活,介导造血转化

阅读:8
作者:Sumin Kang, Shannon Elf, Shaozhong Dong, Taro Hitosugi, Katherine Lythgoe, Ailan Guo, Hong Ruan, Sagar Lonial, Hanna J Khoury, Ifor R Williams, Benjamin H Lee, Johannes L Roesel, Gerard Karsenty, André Hanauer, Jack Taunton, Titus J Boggon, Ting-Lei Gu, Jing Chen

Abstract

Dysregulation of the receptor tyrosine kinase fibroblast growth factor receptor 3 (FGFR3) plays a pathogenic role in a number of human hematopoietic malignancies and solid tumors. These include t(4;14) multiple myeloma associated with ectopic expression of FGFR3 and t(4;12)(p16;p13) acute myeloid leukemia associated with expression of a constitutively activated fusion tyrosine kinase, TEL-FGFR3. We recently reported that FGFR3 directly tyrosine phosphorylates RSK2 at Y529, which consequently regulates RSK2 activation. Here we identified Y707 as an additional tyrosine in RSK2 that is phosphorylated by FGFR3. Phosphorylation at Y707 contributes to RSK2 activation, through a putative disruption of the autoinhibitory alphaL-helix on the C terminus of RSK2, unlike Y529 phosphorylation, which facilitates ERK binding. Moreover, we found that FGFR3 interacts with RSK2 through residue W332 in the linker region of RSK2 and that this association is required for FGFR3-dependent phosphorylation of RSK2 at Y529 and Y707, as well as the subsequent RSK2 activation. Furthermore, in a murine bone marrow transplant assay, genetic deficiency in RSK2 resulted in a significantly delayed and attenuated myeloproliferative syndrome induced by TEL-FGFR3 as compared with wild-type cells, suggesting a critical role of RSK2 in FGFR3-induced hematopoietic transformation. Our current and previous findings represent a paradigm for tyrosine phosphorylation-dependent regulation of serine-threonine kinases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。