Two-dimensional slither swimming of sperm within a micrometre of a surface

精子在表面一微米范围内的二维滑行游动

阅读:9
作者:Reza Nosrati, Amine Driouchi, Christopher M Yip, David Sinton

Abstract

Sperm motion near surfaces plays a crucial role in fertilization, but the nature of this motion has not been resolved. Using total internal reflection fluorescence microscopy, we selectively imaged motile human and bull sperm located within one micron of a surface, revealing a distinct two-dimensional (2D) 'slither' swimming mode whereby the full cell length (50-80 μm) is confined within 1 μm of a surface. This behaviour is distinct from bulk and near-wall swimming modes where the flagellar wave is helical and the head continuously rotates. The slither mode is intermittent (∼1 s, ∼70 μm), and in human sperm, is observed only for viscosities over 20 mPa·s. Bull sperm are slower in this surface-confined swimming mode, owing to a decrease in their flagellar wave amplitude. In contrast, human sperm are ∼50% faster-suggesting a strategy that is well suited to the highly viscous and confined lumen within the human fallopian tube.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。