Superoxide dismutase promotes gastric tumorigenesis mediated by Helicobacter pylori and enhances resistance to 5-fluorouracil in gastric cancer

超氧化物歧化酶促进幽门螺杆菌介导的胃肿瘤发生并增强胃癌对5-氟尿嘧啶的耐药性

阅读:8
作者:Hongbing Fu, Yu Zhang, Yantao Duan, Xin Zhang, Jun Yao, Dejun Yang, Ziran Wei, Zhenxin Zhu, Jiapeng Xu, Zunqi Hu, Qing You, Ronglin Yan, Weijun Wang

Abstract

Helicobacter pylori (H. pylori) infection is the most common risk factor for gastric cancer (GC). The effect of the antioxidase manganese superoxide dismutase (SOD2) in gastric tumorigenesis remains unclear. We explored the molecular mechanisms of links between H. pylori, inflammation, and SOD2 in GC. We found that SOD2 was upregulated in GC. GC patients with high SOD2 expression showed worse overall survival. H. pylori infection promoted SOD2 expression by transcriptionally activating the NF-κB signaling pathway. Knockdown of SOD2 led to increased levels of reactive oxygen species and oxidative stress in response to H. pylori infection. Our research demonstrates that SOD2 can serve as an inhibitor of ferroptosis by activating AKT, and stabilizing GPX4 protein, which subsequently induces 5-fluorouracil resistance. These findings reveal a mechanism whereby H. pylori can promote gastric carcinogenesis by activating the NF-κB/SOD2/AKT/GPX4 pathway, leading to the inhibition of ferroptosis. This may provide a promising therapeutic target for GC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。