A platform for designing hyperpolarized magnetic resonance chemical probes

设计超极化磁共振化学探针的平台

阅读:6
作者:Hiroshi Nonaka, Ryunosuke Hata, Tomohiro Doura, Tatsuya Nishihara, Keiko Kumagai, Mai Akakabe, Masashi Tsuda, Kazuhiro Ichikawa, Shinsuke Sando

Abstract

Hyperpolarization is a highly promising technique for improving the sensitivity of magnetic resonance chemical probes. Here we report [(15)N, D(9)]trimethylphenylammonium as a platform for designing a variety of hyperpolarized magnetic resonance chemical probes. The platform structure shows a remarkably long (15)N spin-lattice relaxation value (816 s, 14.1 T) for retaining its hyperpolarized spin state. The extended lifetime enables the detection of the hyperpolarized (15)N signal of the platform for several tens of minutes and thus overcomes the intrinsic short analysis time of hyperpolarized probes. Versatility of the platform is demonstrated by applying it to three types of hyperpolarized chemical probes: one each for sensing calcium ions, reactive oxygen species (hydrogen peroxide) and enzyme activity (carboxyl esterase). All of the designed probes achieve high sensitivity with rapid reactions and chemical shift changes, which are sufficient to allow sensitive and real-time monitoring of target molecules by (15)N magnetic resonance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。