Phosphoproteomics profiling of sorafenib-resistant hepatocellular carcinoma patient-derived xenografts reveals potential therapeutic strategies

索拉非尼耐药性肝细胞癌患者异种移植瘤的磷酸化蛋白质组学分析揭示了潜在的治疗策略

阅读:7
作者:Feng Li, Bo Hu, Lei Zhang, Yang Liu, Jun Wang, Changqing Wu, Suiyi Wu, Ying Zhang, Xinrong Yang, Haojie Lu

Abstract

Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer with poor prognosis. Sorafenib, a first-line treatment for advanced HCC, has shown limited clinical benefits due to the onset of drug resistance. Thus, it is imperative to comprehend the mechanisms underlying sorafenib resistance and explore strategies to overcome or delay it. Here, we established HCC patient-derived xenograft (PDX) models with acquired resistance to sorafenib and performed comprehensive proteomic and phosphoproteomic analyses on these models. The active cell cycle pathway along with the active cyclin-dependent kinase CDK1 and DNA-dependent protein kinase PRKDC was identified through KEGG pathway enrichment and kinase substrate enrichment analyses. Upon investigating the potential of combining sorafenib with putative kinase inhibitors, we found that the combination displays synergistic anti-proliferative effects in the sorafenib-resistant liver cancer cell line, thus providing a proof of concept for phosphoproteomic-guided design of precision medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。