Conclusions
In STEMI patients treated with pPCI, catecholamines correlated weakly with biomarkers of endothelial damage, with the strongest correlations and highest adrenaline and syndecan-1 levels in patients with shock. Furthermore, adrenaline and syndecan-1 were weakly but independently associated with mortality and heart failure. Acute myocardial infarction appears to cause significant endothelial cell and glycocalyx injury and a parallel increase in circulating catecholamines.
Methods
This was a prospective study of 678 consecutive STEMI-patients admitted to a single high-volume invasive heart centre for primary percutaneous coronary intervention (pPCI) from September 2006 to July 2008. Blood samples were drawn immediately before pPCI. Plasma adrenaline, noradrenaline, syndecan-1 and thrombomodulin were measured retrospectively with complete data in 571 patients (84%). Median follow-up time was 28 (IQR 23 to 34) months. Follow-up was 99.7% complete. Outcomes were all-cause and cardiovascular mortality, re-myocardial infarction and admission due to heart failure.
Results
Circulating noradrenaline and adrenaline correlated weakly but independently with syndecan-1 (rho = 0.15 and rho = 0.13, both P <0.01) and thrombomodulin (rho = 0.11 and rho = 0.17, both P <0.01), biomarkers of glycocalyx and endothelial cell damage, respectively. Considering biomarkers, patients with shock pre-pPCI had higher adrenaline and syndecan-1 and patients admitted to ICU post-pPCI had higher syndecan-1 (all P <0.05), and in the patients with shock (n = 51) catecholamines correlated strongly with thrombomodulin and syndecan-1 (rho = 0.31 to 0.42, all P <0.05). During follow-up, 78 (14%) patients died (37 cardiovascular deaths) and 65 (11%) were admitted with heart failure. By multivariate Cox proportional hazards analyses, one quartile higher plasma adrenaline was weakly but independently associated with both 30-day and long term mortality and heart failure (30-day all-cause mortality hazard ratio (95% CI) 1.39 (1.01 to 1.92), P = 0.046; 30-day heart failure 1.65 (1.17 to 2.34), P = 0.005; and long-term cardiovascular mortality 1.49 (1.08 to 2.04), P = 0.014). Furthermore, one quartile higher syndecan-1 was also weakly but independently associated with long-term all cause mortality (1.26 (1.02 to 1.57), P = 0.034). Conclusions: In STEMI patients treated with pPCI, catecholamines correlated weakly with biomarkers of endothelial damage, with the strongest correlations and highest adrenaline and syndecan-1 levels in patients with shock. Furthermore, adrenaline and syndecan-1 were weakly but independently associated with mortality and heart failure. Acute myocardial infarction appears to cause significant endothelial cell and glycocalyx injury and a parallel increase in circulating catecholamines.
