Akt/protein kinase b and glycogen synthase kinase-3beta signaling pathway regulates cell migration through the NFAT1 transcription factor

Akt/蛋白激酶b和糖原合酶激酶-3beta信号通路通过NFAT1转录因子调节细胞迁移

阅读:13
作者:Merav Yoeli-Lerner, Y Rebecca Chin, Christopher K Hansen, Alex Toker

Abstract

The phosphoinositide 3-kinase (PI3K) pathway regulates a multitude of cellular processes. Deregulation of PI3K signaling is often observed in human cancers. A major effector of PI3K is Akt/protein kinase B (PKB). Recent studies have pointed to distinct roles of Akt/PKB isoforms in cancer cell signaling. Studies have shown that Akt1 (PKBalpha) can attenuate breast cancer cell motility, whereas Akt2 (PKBbeta) enhances this phenotype. Here, we have evaluated the mechanism by which Akt1 blocks the migration of breast cancer cells through the transcription factor NFAT. A major effector of Akt/PKB is glycogen synthase kinase-3beta (GSK-3beta), also a NFAT kinase. Inhibition of GSK-3beta using short hairpin RNA or a selective inhibitor potently blocks breast cancer cell migration concomitant with a reduction in NFAT activity. GSK-3beta-mediated inhibition of NFAT activity is due to proteasomal degradation. Experiments using GSK-3beta mutants, which are unresponsive to Akt/PKB, reveal that inhibition of cell migration by Akt/PKB is mediated by GSK-3beta. These effects are recapitulated at the levels of NFAT degradation by the proteasome. Our studies show that activation of Akt/PKB leads to inactivation of the effector GSK-3beta and the outcome of this signaling event is degradation of NFAT by the proteasome and subsequent inhibition of cell migration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。