Quantitative proteomics and bioinformatic analysis provide new insight into the dynamic response of porcine intestine to Salmonella Typhimurium

定量蛋白质组学和生物信息学分析为猪肠对鼠伤寒沙门氏菌的动态反应提供了新的见解

阅读:7
作者:Melania Collado-Romero, Carmen Aguilar, Cristina Arce, Concepción Lucena, Marius C Codrea, Luis Morera, Emoke Bendixen, Ángela Moreno, Juan J Garrido

Abstract

The enteropathogen Salmonella Typhimurium (S. Typhimurium) is the most commonly non-typhoideal serotype isolated in pig worldwide. Currently, one of the main sources of human infection is by consumption of pork meat. Therefore, prevention and control of salmonellosis in pigs is crucial for minimizing risks to public health. The aim of the present study was to use isobaric tags for relative and absolute quantification (iTRAQ) to explore differences in the response to Salmonella in two segment of the porcine gut (ileum and colon) along a time course of 1, 2, and 6 days post infection (dpi) with S. Typhimurium. A total of 298 proteins were identified in the infected ileum samples of which, 112 displayed significant expression differences due to Salmonella infection. In colon, 184 proteins were detected in the infected samples of which 46 resulted differentially expressed with respect to the controls. The higher number of changes in protein expression was quantified in ileum at 2 dpi. Further biological interpretation of proteomics data using bioinformatics tools demonstrated that the expression changes in colon were found in proteins involved in cell death and survival, tissue morphology or molecular transport at the early stages and tissue regeneration at 6 dpi. In ileum, however, changes in protein expression were mainly related to immunological and infection diseases, inflammatory response or connective tissue disorders at 1 and 2 dpi. iTRAQ has proved to be a proteomic robust approach allowing us to identify ileum as the earliest response focus upon S. Typhimurium in the porcine gut. In addition, new functions involved in the response to bacteria such as eIF2 signaling, free radical scavengers or antimicrobial peptides (AMP) expression have been identified. Finally, the impairment at of the enterohepatic circulation of bile acids and lipid metabolism by means the under regulation of FABP6 protein and FXR/RXR and LXR/RXR signaling pathway in ileum has been established for the first time in pigs. Taken together, our results provide a better understanding of the porcine response to Salmonella infection and the molecular mechanisms underlying Salmonella-host interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。