Accelerating Formulation Design via Machine Learning: Generating a High-throughput Shampoo Formulations Dataset

通过机器学习加速配方设计:生成高通量洗发水配方数据集

阅读:7
作者:Aniket Chitre, Robert C M Querimit, Simon D Rihm, Dogancan Karan, Benchuan Zhu, Ke Wang, Long Wang, Kedar Hippalgaonkar, Alexei A Lapkin

Abstract

Liquid formulations are ubiquitous yet have lengthy product development cycles owing to the complex physical interactions between ingredients making it difficult to tune formulations to customer-defined property targets. Interpolative ML models can accelerate liquid formulations design but are typically trained on limited sets of ingredients and without any structural information, which limits their out-of-training predictive capacity. To address this challenge, we selected eighteen formulation ingredients covering a diverse chemical space to prepare an open experimental dataset for training ML models for rinse-off formulations development. The resulting design space has an over 50-fold increase in dimensionality compared to our previous work. Here, we present a dataset of 812 formulations, including 294 stable samples, which cover the entire design space, with phase stability, turbidity, and high-fidelity rheology measurements generated on our semi-automated, ML-driven liquid formulations workflow. Our dataset has the unique attribute of sample-specific uncertainty measurements to train predictive surrogate models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。