Conclusions
We propose a model of prothrombinase inhibition through combined targeting of both FXa and FVa, and that this mechanism enables down-regulation of thrombin activation outside of a platelet clot. Platelets protect prothrombinase from inhibition, however, supporting a procoagulant environment within the clot.
Methods
We hypothesized that these anticoagulants function best together, and tested this hypothesis using purified proteins and plasma-based systems.
Results
In plasma, TFPIα had greater anticoagulant activity in the presence of APC and PS, maximum PS activity required both TFPIα and APC, and antibodies against TFPI and APC had an additive procoagulant effect, which was mimicked by an antibody against PS alone. In purified protein systems, TFPIα dose-dependently inhibited thrombin activation by prothrombinase, but only in the presence of APC, and this activity was enhanced by PS. Conversely, FXa protected FVa from cleavage by APC, even in the presence of PS, and TFPIα reversed this protection. However, prothrombinase assembled on platelets was still protected from inhibition, even in the presence of TFPIα, APC, and PS. Conclusions: We propose a model of prothrombinase inhibition through combined targeting of both FXa and FVa, and that this mechanism enables down-regulation of thrombin activation outside of a platelet clot. Platelets protect prothrombinase from inhibition, however, supporting a procoagulant environment within the clot.
