Specificity protein 1-mediated ACSL4 transcription promoted the osteoarthritis progression through suppressing the ferroptosis of chondrocytes

特异性蛋白 1 介导的 ACSL4 转录通过抑制软骨细胞铁死亡促进骨关节炎进展

阅读:5
作者:Wen He #, Xuchao Lin #, Kangyao Chen

Background

Chondrocytes are the main cell damage type involved in the occurrence and development of osteoarthritis (OA). Ferroptosis has been confirmed to be related to many degenerative diseases. This research aimed to explore the role of Sp1 and ACSL4 in ferroptosis in the IL-1β-treated human chondrocyte cells line (HCCs).

Conclusion

Upregulation of Sp1 activates Ascl4 transcription and thus mediates the occurrence of ferroptosis. Hence, Acsl4 may be a therapeutic target for intervention of OA.

Methods

The cell viability was detected with CCK8 assay. The ROS, MDA, GSH, and Fe2+ levels were assessed with corresponding detecting kits. The Col2a1, Acan, Mmp13, Gpx4 and Tfr1 levels were determined by RT-qPCR assay. Western blot was conducted to evaluate the Acsl4 and Sp1 levels. PI staining was carried out to analyze the cell death. The double luciferase report was conducted to verify the interaction between Acsl4 and Sp1.

Results

The results showed that IL-1β stimulation elevated the LDH release, cell viability, ROS, MDA and Fe2+ levels and declined the GSH levels in the HCCs. Additionally, the mRNA levels of Col2a1, Acan, and Gpx4 were prominently decreased, while Mmp13 and Tfr1 were prominently elevated in the IL-1β stimulated HCCs. Furthermore, Acsl4 protein levels were upregulated in the IL-1β-stimulated HCCs. Both Acsl4 knockdown and ferrostatin-1 treatment neutralized the role of IL-1β in the HCCs. What's more, Acsl4 was transcriptionally regulated by Specificity protein 1 (Sp1). Sp1 overexpression enhanced the Acsl4 levels and Sp1 knockdown declined it.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。