Nanoscale probing reveals that reduced stiffness of clots from fibrinogen lacking 42 N-terminal Bbeta-chain residues is due to the formation of abnormal oligomers

纳米级探测表明,缺乏 42 个 N 端 Bβ 链残基的纤维蛋白原凝块硬度降低是由于异常低聚物的形成

阅读:8
作者:Radwa H Abou-Saleh, Simon D Connell, Robert Harrand, Ramzi A Ajjan, Michael W Mosesson, D Alastair M Smith, Peter J Grant, Robert A S Ariëns

Abstract

Removal of Bbetal-42 from fibrinogen by Crotalus atrox venom results in a molecule lacking fibrinopeptide B and part of a thrombin binding site. We investigated the mechanism of polymerization of desBbeta1-42 fibrin. Fibrinogen trinodular structure was clearly observed using high resolution noncontact atomic force microscopy. E-regions were smaller in desBbeta1-42 than normal fibrinogen (1.2 nm +/- 0.3 vs. 1.5 nm +/- 0.2), whereas there were no differences between the D-regions (1.7 nm +/- 0.4 vs. 1.7 nm +/- 0.3). Polymerization rate for desBbeta1-42 was slower than normal, resulting in clots with thinner fibers. Differences in oligomers were found, with predominantly lateral associations for desBbeta1-42 and longitudinal associations for normal fibrin. Clot elasticity as measured by magnetic tweezers showed a G' of approximately 1 Pa for desBbeta1-42 compared with approximately 8 Pa for normal fibrin. Spring constants of early stage desBbeta1-42 single fibers determined by atomic force microscopy were approximately 3 times less than normal fibers of comparable dimensions and development. We conclude that Bbeta1-42 plays an important role in fibrin oligomer formation. Absence of Bbeta1-42 influences oligomer structure, affects the structure and properties of the final clot, and markedly reduces stiffness of the whole clot as well as individual fibrin fibers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。