Reactive nitrogen species is required for the activation of the AMP-activated protein kinase by statin in vivo

活性氮物质是他汀类药物在体内激活 AMP 活化蛋白激酶所必需的

阅读:4
作者:Hyoung Chul Choi, Ping Song, Zhonglin Xie, Yong Wu, Jian Xu, Miao Zhang, Yunzhou Dong, Shuangxi Wang, Kai Lau, Ming-Hui Zou

Abstract

The AMP-activated protein kinase (AMPK) is reported to mediate the beneficial effects of statin on the vascular functions, but the biochemical mechanisms are incompletely understood. The aim of the study was to determine how statin activates AMPK. Exposure of confluent bovine aortic endothelial cells to simvastatin (statin) dose-dependently increased phosphorylation of AMPK at Thr(172) and activities of AMPK, which was in parallel with increased detection of both LKB1 phosphorylation at Ser(428) and LKB1 nuclear export. Furthermore, statin treatment was shown to increase protein kinase C (PKC)-zeta activity and PKC-zeta phosphorylation at Thr(410)/Thr(403). Consistently, inhibition of PKC-zeta either by pharmacological or genetic manipulations abolished statin-enhanced LKB1 phosphorylation at Ser(428), blocked LKB1 nucleus export, and prevented the subsequent activation of AMPK. Similarly, in vivo transfection of PKC-zeta-specific small interfering RNA in C57BL/6J mice significantly attenuated statin-enhanced phosphorylation of AMPK-Thr(172), acetyl-CoA carboxylase (ACC)-Ser(79), and LKB1-Ser(428). In addition, statin significantly increased reactive oxygen species, whereas preincubation of mito-TEMPOL, a superoxide dismutase mimetic, abolished statin-enhanced phosphorylation of both AMPK-Thr(172) and ACC-Ser(79). Finally, in vivo administration of statin increased 3-nitrotyrosine and the phosphorylation of AMPK and ACC in C57BL/6J mice but not in mice deficient in endothelial nitric-oxide synthase. Taken together, our data suggest that AMPK activation by statin is peroxynitrite-mediated but PKC-zeta-dependent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。