Conclusion
Our study strongly supports the significance of the genes P4HB, ITGB1, CD36, and ACTN1 to the etiology of osteoporosis risk.
Methods
To investigate the association between monocytes, membrane proteins, and osteoporosis, we performed label-free quantitative subcellular proteomics in 59 male subjects with discordant BMD levels, with 30 high vs. 29 low BMD subjects. Subsequently, we performed integrated gene enrichment analysis, functional annotation, and pathway and network analysis based on multiple bioinformatics tools.
Results
A total of 1070 membrane proteins were identified and quantified. By comparing the proteins' expression level, we found 36 proteins that were differentially expressed between high and low BMD groups. Protein localization prediction supported the notion that the differentially expressed proteins, P4HB (p = 0.0021), CD36 (p = 0.0104), ACTN1 (p = 0.0381), and ITGB1 (p = 0.0385), are significant membrane proteins. Functional annotation and pathway and network analysis highlighted that P4HB, ITGB1, CD36, and ACTN1 are enriched in osteoporosis-related pathways and terms including "ECM-receptor interaction," "calcium ion binding," "leukocyte transendothelial migration," and "reduction of cytosolic calcium levels." Results from transcriptomic and genomic levels provided additional supporting evidences.
