Development of a tandem affinity phosphoproteomic method with motif selectivity and its application in analysis of signal transduction networks

具有基序选择性的串联亲和磷酸化蛋白质组学方法的开发及其在信号转导网络分析中的应用

阅读:13
作者:Laura E Herring, Kyle G Grant, Kevin Blackburn, Jason M Haugh, Michael B Goshe

Abstract

Phosphorylation is an important post-translational modification that is involved in regulating many signaling pathways. Of particular interest are the growth factor mediated Ras and phosphoinositide 3-kinase (PI3K) signaling pathways which, if misregulated, can contribute to the progression of cancer. Phosphoproteomic methods have been developed to study regulation of signaling pathways; however, due to the low stoichiometry of phosphorylation, understanding these pathways is still a challenge. In this study, we have developed a multi-dimensional method incorporating electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with tandem IMAC/TiO2 enrichment for subsequent phosphopeptide identification by LC/MS/MS. We applied this method to PDGF-stimulated NIH 3T3 cells to provide over 11,000 unique phosphopeptide identifications. Upon motif analysis, IMAC was found to enrich for basophilic kinase substrates while the subsequent TiO2 step enriched for acidophilic kinase substrates, suggesting that both enrichment methods are necessary to capture the full complement of kinase substrates. Biological functions that were over-represented at each PDGF stimulation time point, together with the phosphorylation dynamics of several phosphopeptides containing known kinase phosphorylation sites, illustrate the feasibility of this approach in quantitative phosphoproteomic studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。