ISX9 loaded thermoresponsive nanoparticles for hair follicle regrowth

载有 ISX9 的热敏纳米粒子用于毛囊再生

阅读:8
作者:Sapna Sayed, Mehdihasan Shekh, Jiaxing Song, Qi Sun, Han Dai, Vivian Weiwen Xue, Shanshan Liu, Bing Du, Guangqian Zhou, Florian J Stadler, Guangming Zhu, Desheng Lu

Abstract

There is a high demand for an optimal drug delivery system to treat androgenetic alopecia. Topical application of ISX9, which is a neurogenesis inducer, has been found to stimulate hair follicle (HF) regrowth by upregulating the Wnt/β-catenin signaling pathway, an essential pathway involved in initiating HF growth and development. In the present study, a temperature-sensitive, biopolymer-based, biocompatible, and eco-friendly drug-delivery system was synthesized. This system comprised chitosan-grafted poly(glycidyl methacrylate-co-N-isopropyl acrylamide) (Poly(GMA-co-NIPAAm)@CS-PGNCS) as the shell component and PF127 as the core polymer. The hydrophobic nature of the PF127 block copolymer efficiently dissolved the partially water-soluble drug, ISX9, and the thermos-responsive shell polymer effectively released the drug at a definite skin temperature. The optimized spherical nanoparticles demonstrated the lowest critical solution temperature (LCST) at 32 ± 2 °C with a diameter of 100-250 nm, which delivered encapsulated ISX9 with greater precision than topical ISX9. In a series of in vivo experiments, we demonstrated that ISX9-coated TBNPs upregulated the expression of β-catenin, active β-catenin, Wnt target genes, stemness marker genes, proliferating cell nuclear antigen, HF stem cell markers, and HF markers including VEGF, TGF, and IGF-1 more effectively than topical ISX9. These results suggest that TBNPs could be employed as a platform for effective transdermal delivery of various hydrophobic drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。