Androgen depletion in humans leads to cavernous tissue reorganization and upregulation of Sirt1-eNOS axis

人类雄激素耗竭导致海绵组织重组和 Sirt1-eNOS 轴上调

阅读:6
作者:Inês Tomada, Nuno Tomada, Henrique Almeida, Delminda Neves

Abstract

Aging and physiological androgen decay leads to structural changes in corpus cavernosum (CC) that associate with erectile function impairment. There is evidence that such changes relate to nitric oxide (NO) bioavailability, an endothelial compound produced by the action of endothelial NO synthase (eNOS), and is regulated by sirtuin-1 (Sirt1), a NAD(+)-dependent protein deacetylase. Taking into account the reduced NO synthesis observed in aging and erectile dysfunction, we aimed to characterize human CC of androgen-deprived, young, and aged individuals postulating that androgen deprivation induces modifications similar to those observed in aging. Human penile fragments were collected from young individuals submitted to male-to-female sex reassignment procedure, who undergone an androgen deprivation chemical regimen, from young organ donors and from aged patients submitted to penile deviation surgery. They were processed for histomorphometric analysis of smooth muscle (SM) and connective tissues (CT), and dual-immunofluorescence of alpha-actin/vWf or Sirt1, and endothelin-1/eNOS. Estrogen receptors were analyzed by immunohistochemistry and semiquantification of Sirt1, eNOS, and phospho-Akt was assayed by Western blotting. Androgen withdrawal, similarly to aging, leads to a noteworthy reduction of SM-to-CT ratio in CC. However, in contrast to young and aged, a significant increase in penile Sirt1 expression accompanied by an increase in total eNOS expression was observed in androgen-depleted individuals. No changes were evidenced in phospho-Akt system and estrogen receptors were undetectable. These findings indicate that Sirt1 regulates the expression of eNOS in human CC employing mechanisms influenced by androgen depletion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。