Genome-Wide Analysis of TIR-NBS-LRR Gene Family in Potato Identified StTNLC7G2 Inducing Reactive Oxygen Species in Presence of Alternaria solani

马铃薯 TIR-NBS-LRR 基因家族的全基因组分析确定 StTNLC7G2 在黑腐病菌存在下诱导活性氧

阅读:11
作者:Namo Dubey, Anjali Chaudhary, Kunal Singh

Abstract

Resistance gene analogs (RGAs) comprising NBS-LRR gene family members are considered prominent candidates in the development of disease-resistant genotypes. NBS-LRR gene family comprised a very large number of genes; therefore, members of one subfamily TIR-NBS-LRR (TNL) are identified in the present study from Solanum tuberosum genome, followed by their bioinformatics characterization. The study identified a total of 44 genes encoding 60 TNL transcripts with two prominent clusters at chromosome 1 and chromosome 11. Expression analysis of 14 TNL genes after Alternaria solani infection at 1, 2, 3, 5, and 7 days post inoculation in two disease-tolerant varieties, Kufri Jyoti and Kufri Pukhraj, and one relatively susceptible variety, Kufri Chandramukhi, showed differential expression of many genes including a high expression (>15-fold) of StTNLC6G2T1 and StTNLC11G9T1. Functional characterization of one such gene, StTNLC7G2, reveals involvement in the generation of reactive oxygen species under A. solani attack, implicating its putative role in plant defense via hypersensitive response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。