Photochemical corneal cross-linking: Evaluating the potential of a hand-held biopen

光化学角膜交联:评估手持式生物笔的潜力

阅读:5
作者:Nadina Usseglio, Julia López de Andrés, Juan Antonio Marchal, Lorenzo Moroni, Daniel Nieto

Abstract

The generation of organized 3D tissue constructs that combines cells and photo-crosslinkable biomaterials has been demonstrated using a variety of 3D bioprinting technologies. These technologies have inspired the application for "in situ" bioprinting, resulting on hand-held tools called "Biopens" that can transfer bioprinting capabilities directly into the hands of the surgeons. Here, we have developed and validated a biopen for ophthalmological applications, specifically for corneal stromal regeneration using photochemical corneal crosslinking (CXL), as well as for cell bioprinting and, potentially, for corneal wound healing. We used the biopen to CXL, but also for fast crosslinking processes. Cytotoxicity, cell viability and immunofluorescence experiments were performed with human corneal stroma keratocytes (HCK) loaded inside the proposed bioink compositions. Photochemical cross-linking was performed to evaluate the biopen bioprinting functionality for corneal wound closure in porcine eyes. A full-thickness penetrating incision, 5 mm in length parallel to the limbus and perpendicular to the corneal surface, was made in the enucleated porcine cornea. The mechanical properties of cornea are imitated by tuning the proposed (GelMA/PEGDA/PI) bioink composition and crosslinking parameters, which envisage the potential for being translated to a clinical environment to corneal wound closure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。