Relationship between anticancer sensitivities and cellular respiration properties in 5-fluorouracil-resistant HCT116 human colorectal cancer cells

5-氟尿嘧啶耐药的HCT116人结肠直肠癌细胞的抗癌敏感性与细胞呼吸特性之间的关系

阅读:5
作者:Chinatsu Kurasaka, Nana Nishizawa, Haruka Uozumi, Yoko Ogino, Akira Sato

Abstract

5-Fluorouracil (5-FU) is widely used for colorectal cancer (CRC) treatment; however, continuous treatment of CRC cells with 5-FU can result in acquired resistance, and the underlying mechanism of 5-FU resistance remains unclear. We previously established an acquired 5-FU-resistant CRC cell line, HCT116RF10 , and examined its biological features and 5-FU resistance mechanisms. In this study, we evaluated the 5-FU sensitivity and cellular respiration dependency of HCT116RF10 cells and parental HCT116 cells under conditions of high- and low-glucose concentrations. Both HCT116RF10 and parental HCT116 cells were more sensitive to 5-FU under low-glucose conditions compared with high-glucose conditions. Interestingly, HCT116RF10 and parental HCT116 cells exhibited altered cellular respiration dependence for glycolysis and mitochondrial respiration under high- and low-glucose conditions. Additionally, HCT116RF10 cells showed a markedly decreased ATP production rate compared with HCT116 cells under both high- and low-glucose conditions. Importantly, glucose restriction significantly reduced the ATP production rate for both glycolysis and mitochondrial respiration in HCT116RF10 cells compared with HCT116 cells. The ATP production rates in HCT116RF10 and HCT116 cells were reduced by approximately 64% and 23%, respectively, under glucose restriction, suggesting that glucose restriction may be effective at enhancing 5-FU chemotherapy. Overall, these findings shed light on 5-FU resistance mechanisms, which may lead to improvements in anticancer treatment strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。