High resolution monitoring of valvular interstitial cell driven pathomechanisms in procalcific environment using label-free impedance spectroscopy

使用无标记阻抗谱高分辨率监测促钙化环境中瓣膜间质细胞驱动的病理机制

阅读:5
作者:Julia Böttner, Sarah Werner, Lukas Feistner, Tina Fischer-Schaepmann, Katherina Neussl, Michael A Borger, Holger Thiele, Petra Büttner, Florian Schlotter

Discussion

EIS profiles of VICs in control medium (CM) and FM were comparable. PM reproducibly induced a specific, biphasic EIS profile. Phase 1 showed an initial impedance drop, which moderately correlated with decreasing collagen secretion (r = 0.67, p = 0.22), accompanied by mitochondrial membrane hyperpolarization and cell death. Phase 2 EIS signal increase was positively correlated with augmented ECM mineralization (r = 0.97, p = 0.008). VICs in PM decreased myofibroblastic gene expression (p < 0.001) and stress fiber assembly compared to CM. EIS revealed sex-specific differences. Male VICs showed higher proliferation and in PM EIS decrease in phase 1 was significantly pronounced compared to female VICs (male minimum: 7.4 ± 4.2%, female minimum: 26.5 ± 4.4%, p < 0.01). VICs in PM reproduced disease characteristics in vitro remarkably fast with significant impact of donor sex. PM suppressed myofibroblastogenesis and favored ECM mineralization. In summary, EIS represents an efficient, easy-to-use, high-content screening tool enabling patient-specific, subgroup- and temporal resolution.

Methods

VIC-driven ECM remodeling stimulated by procalcifying (PM) or profibrotic medium (FM) was monitored by label-free EIS. Collagen secretion, matrix mineralization, viability, mitochondrial damage, myofibroblastic gene expression and cytoskeletal alterations were analyzed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。