Ischemic Preconditioning Upregulates Decoy Receptors to Protect SH-SY5Y Cells from OGD Induced Cellular Damage by Inhibiting TRAIL Pathway and Agitating PI3K/Akt Pathway

缺血预处理上调诱饵受体,通过抑制 TRAIL 通路和激活 PI3K/Akt 通路保护 SH-SY5Y 细胞免受 OGD 诱导的细胞损伤

阅读:4
作者:Wei Jin #, Wei Xu #, Xiaoxiao Zhang, Chuan-Cheng Ren

Abstract

As ischemic preconditioning (IPC) represents a potential therapy against cerebral ischemia, the purpose of the present study is to explore the molecular mechanisms of ischemic preconditioning induced cerebral protective effect. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, which induces apoptosis through binding to its death receptors (DR4 and DR5). When TRAIL binds to decoy receptors (DcR1 and DcR2), as DcRs lack intact cytoplasmic death domain, TRAIL fails to induce neuronal apoptosis. In the present study, we demonstrated that ischemic preconditioning upregulated DcR1 and DcR2, which subsequently inhibited oxygen glucose deprivation-induced cellular apoptosis. Then, we investigated the protective molecular mechanism of DcRs after ischemic preconditioning treatment. Results showed that DcR1 could competitively bind to TRAIL and partially inhibit TRAIL-induced cellular apoptosis. On the other hand, DcR2 could disturb DRs-associated death-inducing signaling complex formation (DISC), which further inhibited capase-8 activation. Besides, we also found that ischemic preconditioning activated IPC-induced Akt phosphorylation via regulating DcR2 level. Thus, ischemic preconditioning upregulated decoy receptors, which protected cells from oxygen glucose deprivation-induced cellular damage by inhibiting TRAIL-induced apoptosis and agitating PI3K/Akt pathway. Our data complemented the knowledge of neuroprotective mechanism of ischemic preconditioning and provided new evidence for supporting its clinical application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。