Sorbitol-derived carbon overlayers encapsulated Cu nanoparticles on SiO2: Stable and efficient for the continuous hydrogenation of ethylene carbonate

山梨醇衍生的碳覆盖层包裹 SiO2 上的 Cu 纳米粒子:稳定高效地用于碳酸乙烯酯的连续加氢

阅读:8
作者:Tongyang Song, Yuanyuan Qi, Chen Zhao, Peng Wu, Xiaohong Li

Abstract

An ultrastable and efficient Cu@C/SiO2 nanocatalyst was fabricated for the hydrogenation of ethylene carbonate, in which Cu nanoparticles are encapsulated by sorbitol-derived graphitized carbon overlayers. During the calcination of Cu-sorbitol/SiO2 precursors under N2 atmosphere, sorbitol decomposed to CO and CO2. The in situ generated CO not only reduced Cu2+ to Cu0/Cu+, but also formed graphitized carbon overlayers on the Cu surface via the disproportionation of CO. The Cu@C/SiO2 catalyst exhibited superior catalytic performance (91% MeOH yield and 43.6 h-1 TOF) at a H2/EC molar ratio of 20. Of particular note, the Cu@C/SiO2 catalyst showed remarkable long-term stability during 736 h time-on-stream test without any deactivation. The graphitized carbon overlayers on the surface of Cu nanoparticles not only functioned synergistically with the surface Cu0/Cu+ sites to promote the EC hydrogenation but also suppressed the sintering of Cu nanoparticles. Furthermore, the interaction of Cu nanoparticles and graphitized carbon overlayers stabilized the surface Cu+/(Cu0+Cu+) ratio.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。