Rare loss of function mutations in N-methyl-D-aspartate glutamate receptors and their contributions to schizophrenia susceptibility

N-甲基-D-天冬氨酸谷氨酸受体的罕见功能丧失突变及其对精神分裂症易感性的贡献

阅读:7
作者:Yanjie Yu, Yingni Lin, Yuto Takasaki, Chenyao Wang, Hiroki Kimura, Jingrui Xing, Kanako Ishizuka, Miho Toyama, Itaru Kushima, Daisuke Mori, Yuko Arioka, Yota Uno, Tomoko Shiino, Yukako Nakamura, Takashi Okada, Mako Morikawa, Masashi Ikeda, Nakao Iwata, Yuko Okahisa, Manabu Takaki, Shinji Sakamoto, T

Abstract

In schizophrenia (SCZ) and autism spectrum disorder (ASD), the dysregulation of glutamate transmission through N-methyl-D-aspartate receptors (NMDARs) has been implicated as a potential etiological mechanism. Previous studies have accumulated evidence supporting NMDAR-encoding genes' role in etiology of SCZ and ASD. We performed a screening study for exonic regions of GRIN1, GRIN2A, GRIN2C, GRIN2D, GRIN3A, and GRIN3B, which encode NMDAR subunits, in 562 participates (370 SCZ and 192 ASD). Forty rare variants were identified including 38 missense, 1 frameshift mutation in GRIN2C and 1 splice site mutation in GRIN2D. We conducted in silico analysis for all variants and detected seven missense variants with deleterious prediction. De novo analysis was conducted if pedigree samples were available. The splice site mutation in GRIN2D is predicted to result in intron retention by minigene assay. Furthermore, the frameshift mutation in GRIN2C and splice site mutation in GRIN2D were genotyped in an independent sample set comprising 1877 SCZ cases, 382 ASD cases, and 2040 controls. Both of them were revealed to be singleton. Our study gives evidence in support of the view that ultra-rare variants with loss of function (frameshift, nonsense or splice site) in NMDARs genes may contribute to possible risk of SCZ.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。