Intradiscal Injection of Induced Pluripotent Stem Cell-Derived Nucleus Pulposus-Like Cell-Seeded Polymeric Microspheres Promotes Rat Disc Regeneration

椎间盘内注射诱导性多能干细胞衍生的髓核样细胞接种聚合物微球促进大鼠椎间盘再生

阅读:7
作者:Kaishun Xia, Jian Zhu, Jianming Hua, Zhe Gong, Chao Yu, Xiaopeng Zhou, Jingkai Wang, Xianpeng Huang, Wei Yu, Liming Li, Jianqing Gao, Qixin Chen, Fangcai Li, Chengzhen Liang

Background

Cell replacement therapy is an attractive alternative for treating degenerated intervertebral discs (IVDs), which are related to the reduction of nucleus pulposus-like cells (NP-lCs) and the loss of the extracellular matrix. Induced pluripotent stem cells (iPSCs) which resemble embryonic stem cells are considered to be a potential resource for restoring NP-lCs and disc homeostasis. Here, we proposed an efficient two-step differentiation protocol of human iPSCs into NP-lCs and continuously tested their in vivo ability to regenerate IVDs.

Conclusions

The results suggest that NP-lC-seeded GDF-5-loaded GMs could partially regenerate degenerated intervertebral discs after transplantation into rat coccygeal intervertebral discs. Our study will help develop a promising method of stem cell-based therapy for IDD.

Methods

A polymeric gelatin microsphere (GM) was generated for sustained release of growth and differentiation factor-5 (GDF-5) and as a cell delivery vehicle of NP-lCs. By injecting NP-lC-seeded GDF-5-loaded GMs into the rat coccygeal intervertebral discs, the disc height and water content were examined with the molybdenum target radiographic imaging test and magnetic resonance imaging examination. Histology and immunohistochemistry

Results

We demonstrated that the injection of NP-lC-seeded GDF-5-loaded GMs could reverse IDD in a rat model. The imaging examination indicated that disc height recovered and water content increased. Histology and immunohistochemistry results indicated that the NP cells as well as their extracellular matrix were partially restored. Conclusions: The results suggest that NP-lC-seeded GDF-5-loaded GMs could partially regenerate degenerated intervertebral discs after transplantation into rat coccygeal intervertebral discs. Our study will help develop a promising method of stem cell-based therapy for IDD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。