Carboxyl-terminal modulator protein regulates Akt signaling during skeletal muscle atrophy in vitro and a mouse model of amyotrophic lateral sclerosis

羧基末端调节蛋白在体外骨骼肌萎缩过程中调节 Akt 信号传导以及肌萎缩侧索硬化症小鼠模型

阅读:7
作者:Junmei Wang, Colin M E Fry, Chandler L Walker

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease involving motor neuron death, paralysis and, ultimately, respiratory failure. Motor neuron dysfunction leads to target skeletal muscle atrophy involving dysregulation of downstream cell survival, growth and metabolic signaling. Decreased Akt activity is linked to muscle atrophy in ALS and is associated with increased atrophy gene expression. Unfortunately, the regulating mechanism of Akt activity in atrophic muscle remains unclear. Recent research indicates a role of carboxyl-terminal modulator protein (CTMP) in Akt-signaling related neurologic dysfunction and skeletal muscle metabolism. CTMP is known to bind and reduce Akt phosphorylation and activation. We hypothesized that CTMP expression might progressively increase in ALS skeletal muscle as the disease progresses, downregulating Akt activity. We found that CTMP protein expression significantly increased in hindlimb skeletal muscle in the mSOD1G93A mouse model of ALS in late stages of the disease (P < 0.05), which negatively correlated with Akt phosphorylation over this period (R2 = -0.77). Co-immunoprecipitation of Akt revealed CTMP binding in pre-symptomatic and end-stage skeletal muscle, suggesting a possible direct role in reduced Akt signaling during disease progression. Inflammatory TNFα and downstream cellular degradation process markers for autophagy, lysosome production, and atrophy significantly increased in a pattern corresponding to increased CTMP expression and reduced Akt phosphorylation. In an in vitro model of skeletal muscle atrophy, differentiated C2C12 cells exhibited reduced Akt activity and decreased FOXO1 phosphorylation, a process known to promote transcription of atrophy genes in skeletal muscle. These results corresponded with increased Atrogin-1 expression compared to healthy control cells (P < 0.05). Transfection with CTMP siRNA significantly increased Akt phosphorylation in atrophic C2C12 cells, corresponding to significantly decreased CTMP expression. In conclusion, this is the first study to provide evidence for a link between elevated CTMP expression, downregulated Akt phosphorylation and muscle atrophy in ALS and clearly demonstrates a direct influence of CTMP on Akt phosphorylation in an in vitro muscle cell atrophy model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。