Roles of SNORD115 and SNORD116 ncRNA clusters during neuronal differentiation

SNORD115 和 SNORD116 ncRNA 簇在神经元分化过程中的作用

阅读:8
作者:Aleksandra Helwak, Tomasz Turowski, Christos Spanos, David Tollervey

Abstract

In the snoRNA host gene SNHG14, 29 consecutive introns each generate SNORD116, and 48 tandem introns encode SNORD115. Loss of SNORD116 expression, but not of SNORD115, is linked to the neurodevelopmental disease Prader-Willi syndrome. SNORD116 and SNORD115 resemble box C/D small nucleolar RNAs (snoRNAs) but lack known targets. Both were strongly accumulated during neuronal differentiation, but with distinct mechanisms: Increased host-gene expression for SNORD115 and apparent stabilization for SNORD116. For functional characterization we created cell lines specifically lacking the expressed, paternally inherited, SNORD115 or SNORD116 cluster. Analyses during neuronal development indicates changes in RNA stability and protein synthesis. These data suggest that the loss of SNORD116 enhances some aspects of developmental timing of neuronal cells. Altered mRNAs include MAGEL2, causal in the PWS-like disorder Schaaf-Yang syndrome. Comparison of SNORD115 and SNORD116 mutants identifies small numbers of altered mRNAs and ncRNAs. These are enriched for functions potentially linked to PWS phenotypes and include protocadherins, which are key cell signalling factors during neurodevelopment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。