Abstract
The targeted assembly of antibody products upon antigen binding represents a novel strategy for the reconstitution of potent therapeutic activity at the site of disease, sparing healthy tissues. We demonstrate that interleukin-12, a heterodimeric pro-inflammatory cytokine consisting of the disulfide-linked p40 and p35 subunits, can be reconstituted by sequential reassembly of fusion proteins based on antibody fragments and interleukin-12 subunit mutants. Analysis of the immunostimulatory properties of interleukin-12 and its derivatives surprisingly revealed that the mutated p35 subunit partially retained the activity of the parental cytokine, whereas the p40 subunit alone was not able to stimulate T cells or natural killer cells. The concept of stepwise antibody-based reassembly of split cytokines could be useful for the development of other anticancer therapeutics with improved safety and tolerability.
