Search for common targets of lithium and valproic acid identifies novel epigenetic effects of lithium on the rat leptin receptor gene

寻找锂和丙戊酸的共同靶点,确定锂对大鼠瘦素受体基因的新型表观遗传效应

阅读:5
作者:R S Lee, M Pirooznia, J Guintivano, M Ly, E R Ewald, K L Tamashiro, T D Gould, T H Moran, J B Potash

Abstract

Epigenetics may have an important role in mood stabilizer action. Valproic acid (VPA) is a histone deacetylase inhibitor, and lithium (Li) may have downstream epigenetic actions. To identify genes commonly affected by both mood stabilizers and to assess potential epigenetic mechanisms that may be involved in their mechanism of action, we administered Li (N = 12), VPA (N = 12), and normal chow (N = 12) to Brown Norway rats for 30 days. Genomic DNA and mRNA were extracted from the hippocampus. We used the mRNA to perform gene expression analysis on Affymetrix microarray chips, and for genes commonly regulated by both Li and VPA, we validated expression levels using quantitative real-time PCR. To identify potential mechanisms underlying expression changes, genomic DNA was bisulfite treated for pyrosequencing of key CpG island 'shores' and promoter regions, and chromatin was prepared from both hippocampal tissue and a hippocampal-derived cell line to assess modifications of histones. For most genes, we found little evidence of DNA methylation changes in response to the medications. However, we detected histone H3 methylation and acetylation in the leptin receptor gene, Lepr, following treatment with both drugs. VPA-mediated effects on histones are well established, whereas the Li effects constitute a novel mechanism of transcriptional derepression for this drug. These data support several shared transcriptional targets of Li and VPA, and provide evidence suggesting leptin signaling as an epigenetic target of two mood stabilizers. Additional work could help clarify whether leptin signaling in the brain has a role in the therapeutic action of Li and VPA in bipolar disorder.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。