Mussel-inspired polymer with catechol and cationic Lys functionalities for dentin wet bonding

受贻贝启发的具有儿茶酚和阳离子赖氨酸功能的聚合物,用于牙本质湿粘合

阅读:8
作者:Zunhan Hu, Wenzhen Wu, Meizhe Yu, Zhi Wang, Zhenyu Yang, Xiaodong Xing, Xiaofang Chen, Lina Niu, Fan Yu, Yuhong Xiao, Jihua Chen

Abstract

Mussels can form tough and long-lasting adhesions to organic and inorganic surfaces in saline and impactive severe aquatic environments. Similar to mussel adhesion, dentin bonding occurs in a wet environment. However, unlike mussels, it is difficult to achieve long-lasting bonds with dentin. Moreover, water is considered a major hindrance in dentin bonding. Inspired by the synergistic effect of cationic lysine (Lys) and catechol on the elimination of the hydration layer during mussel adhesion, a catechol- and Lys-functionalized polymerizable polymer (catechol-Lys-methacrylate [CLM]) was synthesized to replicate the complex synergy between amino acids and catechol. The bond-promoting potential of 5 ​mg/mL CLM primer was confirmed using an in vitro wet dentin-bonding model, which was characterized by an improvement in bond strength and durability. CLM can adhere to wet demineralized dentin, with Lys acting as a molecular vanguard to expel water. Subsequently, a myriad of interfacial interactions can be obtained by introducing the catechol group into the interface. Additionally, tough and long-lasting adhesion, similar to that formed by mussels, can be achieved by grafting CLM onto type I collagen via covalent bonds, hydrogen bonds, Van der Waals interactions, and cation-π interactions, which can enhance the mechanical and chemical stability of collagen, increase the enzymatic resistance of collagen, and provide additional physical/chemical adhesion to dentin bonds. Catechol- and cationic Lys-functionalized polymers can improve the stability of the resin-dentin interface under wet conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。