Programmable adhesion and morphing of protein hydrogels for underwater robots

用于水下机器人的蛋白质水凝胶的可编程粘附和变形

阅读:5
作者:Sheng-Chen Huang, Ya-Jiao Zhu, Xiao-Ying Huang, Xiao-Xia Xia, Zhi-Gang Qian

Abstract

Soft robots capable of efficiently implementing tasks in fluid-immersed environments hold great promise for diverse applications. However, it remains challenging to achieve robotization that relies on dynamic underwater adhesion and morphing capability. Here we propose the construction of such robots with designer protein materials. Firstly, a resilin-like protein is complexed with polyoxometalate anions to form hydrogels that can rapidly switch between soft adhesive and stiff non-adhesive states in aqueous environments in response to small temperature variation. To realize remote control over dynamic adhesion and morphing, Fe3O4 nanoparticles are then integrated into the hydrogels to form soft robots with photothermal and magnetic responsiveness. These robots are demonstrated to undertake complex tasks including repairing artificial blood vessel, capturing and delivering multiple cargoes in water under cooperative control of infrared light and magnetic field. These findings pave an avenue for the creation of protein-based underwater robots with on-demand functionalities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。